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Abbreviations

The following abbreviations will appear in this talk in various places.

TDA: Topological Data Analysis
PH: Persistent Homology [ will explain them in this talk.

ML: Machine Learning
SVM: Support Vector Machines . ,
These are machine learning

RF:  Random Forest specific  terminologies.  I’ll
NN: Neural Network assume working knowledge of

CNN: Convolutional Neural Network these methods.



Our contribution

> This i1s quite possibly the first application of TDA based methods
that use persistent homology for a seismic imaging application.

More generally...

> This 1s quite possibly one of the first applications of TDA based

methods that use persistent homology for a problem relevant to the
oil and gas industry.



Seismic textures

> In a seismic 1mage, different lithologies often have very different
“visual appearances”.

> For example, salt bodies appear different from sedimentary sections.

> The trained human eye of seismic interpreters can easily detect these
differences.

Seismic interpreter’s job (simplistic viewpoint)

Segment seismic images based on a combination of

e Secismic texture
e Historical memory
e Geological knowledge



ML challenges — texture classification

Challenges of texture classification

> Areas with similar “look and feel”. This can be hard to quantify.
(Think: I know it when I see it, but can’t describe exactly what I’'m seeing.)

> Repetitive / recurrent (but not necessarily periodic).

> What kind of features can capture these properties?



Seismic texture classification

What we want

Image |  Label
A popular strategy
Image . 1124 achme "I Label
earning

Our roadmap

| Topological || Blackbox | |

Features Classifier Label

Image




Why topology?

Features of “algebraic topology”
> Study of topological spaces up to homotopy
equivalence (continuous deformation).

> Identifies quantities that are scale,
translation, rotation, and deformation
Invariant.

Topological data analysis

> Tools to understand topology in data.

> Turns topological information into features
(real numbers), that computers can process.

> Adapts tools from algebraic topology to study
discrete point cloud data.

“ 4 . Mathematical Association of

o

Victoria
Mhrs - @

Best pic I've seen as to why a donut and a
teacup are topologically equivalent.

Continuous deformation of a
coffee mug to a doughnut



Simplicial Complex

. . A ° l. ° l l
The key topological object (relevant to our work) Ene s complox

is a simplicial complex. Abstractly this i1s a
triangulation of a topological space.

Definition of a simplicial complex

A set of simplices* (points, lines, triangles, and | e
higher dimensional objects) that satisfy the

following two properties:

> Every face of a simplex 1s also a simplex.
> Intersection of any two simplices i1s a face of

each simplex.
P Source: Wikipedia

* “Simplices” is the plural of the word “simplex”.



Simplices of a simplicial complex

Topological space

Simplicial complex

Filled triangle A

1 - Simplices

A

0 - Simplices 2 - Simplices
Triangle with a hole i | * / I
[ [
o —

0 - Simplices 1 - Simplices
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Homology of a simplicial complex

Consider formal linear combinations of vertices / edges / triangles 1n a simplicial
complex X of dimension 2. This produces a set of vector spaces C,(X) (k =0 for
vertices, k = 1 for edges...). There are linear boundary maps 0, - C (X) — C,_,(X)

d(e—>—o0) = (o) — (o)
Q o o o
o 0—>—0 O @ ¢—>—0
with the property that 0 © 0= 0.
The k™ homology group, and the k'™ Betti number are defined as
Hp(X) = ker(0)/img(0k+1), PBr = dimH(X).

> fp counts clusters that are not connected (called connected components).
> (1 counts cycles that are not boundaries (called holes).



Turning an 1mage 1nto a topological space

One way to do this is to form a simplicial complex as follows:
> Pixels become points in the space

> Adjacent pixels are connected by an edge

> Diagonal edges added by Freudenthal triangulation

>

3 adjacent pixels are spanned by a triangle

1.0
0.7

0.3
0.0

3 x 3 image Freudenthal triangulation
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Resulting simplicial complex

0 - Simplices 1 - Simplices 2 - Simplices
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Need for filtered topological spaces

0 - Simplices 1 - Simplices 2 - Simplices

Problem: Topological spaces created from all pixels in the image always
generate exactly the same simplicial complex — useless for classification.

14



Filtered topological spaces

A more interesting topological space:
> Choose some pixel value w.
Only points with pixel values <w are used.

Only edges with both endpoints are included.

Vv VYV

Only triangles with boundary edges are included.

1.0
0.7

0.3
0.0
®

3 x 3 image Topological space at w = 0.7




Filtration and persistence

Key ideas

> C(Create a sequence of nested topological spaces.
> Track homology changes across the topological spaces.

> Turn this information into quantifiable numbers.

Nested topological spaces or Filtration
We use a sublevel set filtration.
> Vary pixel value w from minimum to maximum pixel value.

> For each w, we construct a filtered topological space X .
> Property: usw=X & X .
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Persistent homology

Persistent homology is the tool that quantifies how homology changes across
a filtration.

Input: A filtration {X } .

Output: A collection of pairs of real numbers for each homology dimension

k, calculated as
PHk({Xw}w) Ta {(bjadj)}j'

These are called birth-death pairs, and track how homology changes over the
filtration.

Properties:

> Homotopy invariant (deformation, rotation, translation).

> Stable to perturbations of pixel values.

17



Example of how a filtration 1s built

Example Image Corresponding Filtration

1.0
0.7

I 0.3
0.0
o
w =20

/30:17/81:0

At w =0, a single point appears, and H  homology is born.
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Example of how a filtration 1s built

Example Image Corresponding Filtration
[ ]
1.0
0.7
I 0.3 I
0.0
[ ® ®

w=~0 w=0.3
Bo=1,81=0 Bo=2,6=0

At w = 0.3, several points connect to the first point, and a new component
emerges. H homology is born one more time.
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Example of how a filtration 1s built

Example Image Corresponding Filtration
[ ]

1.0
0.7

I 03 I /
0.0

[ ® ® ®

w=20 w=0.3 w=0.7

Bo=1,81=0 Bp=28=0 p=13=1

At w = 0.7, the two components join, and a hole appears. We also see our first
triangle. So H homology has died, while H homology 1s born.
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Example of how a filtration 1s built

Corresponding Filtration

4

w=0 w=0.3 w=0.7 w=1
Bo=1,81=0 Bo=2,8=0 po=1,5=1 H=16=0

At w =1, all points are now present, and all edges and triangles fill in the space.
The hole has now disappeared, and so H homology has died.




Example of how a filtration 1s built

Example Image Corresponding Filtration
[ ]
1.0
0.7
I 0.3 I
0.0
[ ® ®
@ >
PH,
® @
PH o o

1
Persistence Barcode:

Information about how components appear and merge is encoded in PH .

Information about how 1D holes appear and fill is encoded.in PH




Example of how a filtration 1s built

Corresponding Filtration

L
[ I L ®
0 e~ pu ° :
// 0 [ | L J
07 o
b / PH o o
8 2 L
0.3 - Persistence Diagram:
0.0

00 03 07 10° The start and endpoints of the barcode are plotted in the plane.

Birth Each point is referred to as a birth-death pair.




1
2
3.
4

Applications on a real 2D dataset

For the rest of this talk we will use the LANDMASS’ dataset to demonstrate the
workflow and our results. This is a publicly available dataset of two sets of labeled 2D

seismic image patches, each with 4 classes.

LANDMASS-1 LANDMASS-2
Image Size (pixels) 99 x 99 150 x 300
Class Names Number of Images Number of Images
Horizons 9385 1000
Chaotic Horizons 5140 1000
Fault Patches 1251 1000
Salt Domes 1891 1000

*Alaudah, Y., Wang, Z., Long, Z. and AlRegib, G. [2015] LANDMASS Seismic Dataset.
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Sample 1images (1mages not to scale)

LANDMASS-1 LANDMASS-2

Fault Patches Salt EAGE ANNUAL

81ST CONFERENCE + EXHIBITION
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Persistence diagram results (LANDMASS-2)

Sample Images
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Persistence diagram results (LANDMASS-2)

Death

Death

Persistence Diagrams

1.0
Class 1 Class 2
0.5 - 4
0.0 - / /
—0.5 _)} b
-1.0
1.0
Class 4 Class 3
0.5 A
0.0 - / /
—0.5 4 | ‘
. HO
. H1
_10 T T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Birth

Birth

Subtle  differences between the

persistence diagrams.

To train a classifier we need:

> Statistically significant intra-class
similarity.

> Statistically significant inter-class
dissimilarity.

Currently working on how to make this

more precise, and generate metrics. {27




Need for featurization of persistence diagrams

We want to use a machine learning (ML) approach for training a classifier based
on the persistence diagrams.

So far: 2D Images | Persistence Diagrams

Key points about the persistence diagrams:

> Every image produces a different number of birth-death pairs.

> We want a standard number of features for a ML workflow.

28



Polynomial featurization

One approach 1s based on polynomial functions’, which we adopt in our work

p(a;{bi,d;}ics) = ijajk( b; )7 (d; + b; )"
ied j.k
For both homology dimensions 0 and 1 we choose 0:5_
Ak = Oj=jy k=ko

Death

where (5o, ko) € {0,1,2,3}* — {(0,0)}. o3l

-1.0

-1.0 —(I).S B()ii'(:h 015 1.0
This gives us a total of 15 x 2 = 30 features per
persistence diagram.

l Featurization

* A. Adcock, E. Carlsson, G. Carlsson. The ring of algebraic functions on persistence barcodes. Homology.
Homotopy and Applications. 18(1) 2016.
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LANDMASS-1 features

Projection of polynomial features into top two principal components. Each point
1s an image in the LANDMASS-1 dataset.

> Class 1 separates

Class 1 .

Class 2 chely from the

Class 3 other classes.

Class 4 > With 2 principal
components,
classes are not well
separated.

- > More components
are needed.




LANDMASS-2 features

Projection of polynomial features into top two principal components. Each point
1s an image in the LANDMASS-2 dataset.

> C(lasses reasonably
Class 1 ® 2

Class 2 - Well separateq Wlth
Class 3 just top 2 principal
Class 4 . o * o components.
“ ” r v \ /
, o
' ® > Equal class sizes

help classification.




ML workflow

Split data into train
(70%) and test
(30%) sets, per class,
randomly.

Produce persistence
diagrams for each
1mage.

Produce polynomial
features from each
persistence diagram.

Train and test blackbox
classifiers on
polynomial features.

Three algorithms
tested:
e Multiclass SVM
e RF
e NN

32



Derived attribute image based ML workflow

Split data into train
(70%) and test
(30%) sets, per class,
randomly.

Produce persistence
diagrams for each
1mage.

Create derived
attribute images
from the raw images
(e.g. root mean
square amplitude,
GLCM* cubes)

Produce polynomial
features from each
persistence diagram.

Train and test blackbox
classifiers on
polynomial features.

Three algorithms
tested:
e Multiclass SVM
e RF
e NN

* GLCM: Gray-Level Co-Occurrence Matrix



Classification results: Multiclass SVM classifier

Attribute SVM Accuracy

Raw 99.8 /75.2 /0.0 / 0.0
Image 100.0 / 55.0 / 88.3 / 74.3

GLCM 100.0 / 18.6 / 34.1 / 29.3
Mean 62.7 / 19.0 / 4.0 / 100.0

RMS 100.0 /1.0 /0.0 / 0.0
Amplitude  74.7 / 85.7 / 71.3 / 61.7
GLCM 100.0 /0.0 /0.0 / 0.0

Correlation  64.7 / 32.0 / 89.3 / 32.3

GLCM 96.6 / 94.1 / 92.8 / 67.7
Variance 97.3 /933 /91.7 / 87.0

Class 1/ Class 2/ Class 3 / Class 4

Top Row: LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw
image, and best 4 attributes
with respect to RF classifier.

> Linear classifiers like
SVM perform poorly.

> Need nonlinear decision
boundaries.
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Classification results: RF classifier

Attribute RF Accuracy
Raw 99.9 /98.6 / 95.2 / 93.3
Image 100.0 / 98.0 / 100.0 / 96.3
GLCM 99.9 /979 / 82.1 / 93.3
Mean 100.0 /97.0 / 97.3 / 91.7
RMS 99.3 / 96.1 / 88.0 / 82.0
Amplitude  99.7 / 96.0 / 96.0 / 91.7
GLCM 99.3 /949 /80.8 / 91.2
Correlation  99.7 / 93.7 / 92.0 / 97.0
GLCM 98.5 / 95.7 / 96.3 / 74.0
Variance 99.0 / 95.3 / 96.7 / 89.7

Class 1/ Class 2/ Class 3 / Class 4

Top Row: LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw
image, and best 4 attributes
with respect to RF classifier.

> Nonlinear classifiers do
much better.
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Classification results: NN classifier

Attribute NN Accuracy
Raw 100.0 / 99.6 / 99.7 / 98.4
Image 100.0 / 100.0 / 99.0 / 95.0
GLCM 100.0 / 97.8 / 92.8 / 97.0
Mean 100.0 / 96.0 / 95.7 / 96.3
RMS 995 /99.1 /96.3 /915
Amplitude  99.7 / 99.0 / 93.7 / 01.3
GLCM 99.8 / 93.6 / 87.7 / 96.7
Correlation  100.0 / 95.7 / 93.7 / 98.3
GLCM 99.3 /08.3 /98.1 /87.3
Variance 99.7 / 99.0 / 99.3 / 95.0

Class 1/ Class 2/ Class 3 / Class 4

Top Row: LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw
image, and best 4 attributes
with respect to RF classifier.

> Nonlinear classifiers do
much better.
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Conclusions

> TDA derived features perform well for texture classification in
seismic 1mages.

> Nonlinear decision boundary classifiers are necessary for good
classification accuracy.

> These features could augment existing ML workflows for similar
tasks.
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Software used 1n this study

> GUDHI!Y in Python — persistent homology calculations.
> Scikit-learn!*) in Python — SVM and RF classifiers.

> Tensorflow!*! in Python — NN classifier.

[1] C. Maria, “Filtered Complexes, GUDHI User and Reference Manual”, http://gudhi.gforge.inria.fr/doc/latest/group
simplex tree.html, 2015.

[2] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research 12, 2011.

[3] M. Abadi et al.,, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems”, Whitepaper,
https://www.tensorflow.org/, 2015.
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Questions

Thank you for listening!

Questions?

If you need more information contact us by email at:
rsarkar(@stanford.edu, bjnelson@stanford.edu
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