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Abbreviations

The following abbreviations will appear in this talk in various places.

TDA:  Topological Data Analysis
PH:     Persistent Homology

ML:    Machine Learning
SVM:  Support Vector Machines
RF:     Random Forest
NN:     Neural Network
CNN:  Convolutional Neural Network

I will explain them in this talk.

These are machine learning 
specific terminologies. I’ll 
assume working knowledge of 
these methods.
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Our contribution

➢ This is quite possibly the first application of TDA based methods 
that use persistent homology for a seismic imaging application.

More generally...
➢ This is quite possibly one of the first applications of TDA based 

methods that use persistent homology for a problem relevant to the 
oil and gas industry.
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Seismic textures
➢ In a seismic image, different lithologies often have very different 

“visual appearances”. 

➢ For example, salt bodies appear different from sedimentary sections.

➢ The trained human eye of seismic interpreters can easily detect these 
differences.

Seismic interpreter’s job (simplistic viewpoint) 
Segment seismic images based on a combination of
● Seismic texture
● Historical memory
● Geological knowledge
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ML challenges — texture classification

Challenges of texture classification

➢ Areas with similar “look and feel”. This can be hard to quantify.
(Think: I know it when I see it, but can’t describe exactly what I’m seeing.)

➢ Repetitive / recurrent (but not necessarily periodic).

➢ What kind of features can capture these properties?



Seismic texture classification
What we want

A popular strategy

Our roadmap

Image Label

Image Machine 
Learning Label

Image Blackbox 
Classifier LabelTopological 

Features
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Why topology?
Features of “algebraic topology”
➢ Study of topological spaces up to homotopy 

equivalence (continuous deformation).

➢ Identifies quantities that are scale, 
translation, rotation, and deformation 
invariant.

Topological data analysis
➢ Tools to understand topology in data.

➢ Turns topological information into features 
(real numbers), that computers can process.

➢ Adapts tools from algebraic topology to study 
discrete point cloud data.

Continuous deformation of a 
coffee mug to a doughnut



9

Simplicial Complex
The key topological object (relevant to our work) 
is a simplicial complex. Abstractly this is a 
triangulation of a topological space.

Definition of a simplicial complex
A set of simplices* (points, lines, triangles, and 
higher dimensional objects) that satisfy the 
following two properties:

➢ Every face of a simplex is also a simplex.
➢ Intersection of any two simplices is a face of 

each simplex.

* “Simplices” is the plural of the word “simplex”.

A simplicial complex

Source: Wikipedia
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Simplices of a simplicial complex
Topological space Simplicial complex

Filled triangle

Triangle with a hole

{ { {

{ {
0 - Simplices

1 - Simplices

2 - Simplices

0 - Simplices 1 - Simplices

} } }

}}
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Homology of a simplicial complex
Consider formal linear combinations of vertices / edges / triangles in a simplicial 
complex X of dimension 2. This produces a set of vector spaces Ck(X) (k = 0 for 
vertices, k = 1 for edges...). There are linear boundary maps ∂k : Ck(X) → Ck-1(X)

with the property that ∂ ￮ ∂ = 0.

The kth homology group, and the kth Betti number are defined as

➢    counts clusters that are not connected (called connected components).
➢    counts cycles that are not boundaries (called holes).
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Turning an image into a topological space
One way to do this is to form a simplicial complex as follows:

➢ Pixels become points in the space

➢ Adjacent pixels are connected by an edge

➢ Diagonal edges added by Freudenthal triangulation

➢ 3 adjacent pixels are spanned by a triangle

3 x 3 image Freudenthal triangulation
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Resulting simplicial complex
0 - Simplices 1 - Simplices 2 - Simplices
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Need for filtered topological spaces
0 - Simplices 1 - Simplices 2 - Simplices

Problem: Topological spaces created from all pixels in the image always 
generate exactly the same simplicial complex — useless for classification.
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Filtered topological spaces
A more interesting topological space:

➢ Choose some pixel value w.

➢ Only points with pixel values  ≤ w are used.

➢ Only edges with both endpoints are included.

➢ Only triangles with boundary edges are included.

3 x 3 image Topological space at w = 0.7
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Filtration and persistence
Key ideas
➢ Create a sequence of nested topological spaces.
➢ Track homology changes across the topological spaces.
➢ Turn this information into quantifiable numbers.

Nested topological spaces or Filtration
We use a sublevel set filtration.

➢ Vary pixel value w from minimum to maximum pixel value.
➢ For each w, we construct a filtered topological space Xw.
➢ Property: u ≤ w ⇒ Xu ⊆ Xw .
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Persistent homology
Persistent homology is the tool that quantifies how homology changes across 
a filtration.

Input: A filtration {Xw}w .

Output: A collection of pairs of real numbers for each homology dimension 
k, calculated as

These are called birth-death pairs, and track how homology changes over the 
filtration.

Properties:

➢ Homotopy invariant (deformation, rotation, translation).
➢ Stable to perturbations of pixel values.
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Example of how a filtration is built
Example Image Corresponding Filtration

At w = 0, a single point appears, and H0 homology is born.
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Example of how a filtration is built
Example Image Corresponding Filtration

At w = 0.3, several points connect to the first point, and a new component 
emerges. H0 homology is born one more time.
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Example of how a filtration is built
Example Image Corresponding Filtration

At w = 0.7, the two components join, and a hole appears. We also see our first 
triangle. So H0 homology has died, while H1 homology is born.



21

Example of how a filtration is built
Example Image Corresponding Filtration

At w = 1, all points are now present, and all edges and triangles fill in the space. 
The hole has now disappeared, and so H1 homology has died.
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Example of how a filtration is built
Example Image Corresponding Filtration

PH0

PH1
Persistence Barcode:

Information about how components appear and merge is encoded in PH0.
Information about how 1D holes appear and fill is encoded in PH1.
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Example of how a filtration is built
Example Image Corresponding Filtration

PH0

PH1
Persistence Diagram:

The start and endpoints of the barcode are plotted in the plane.
Each point is referred to as a birth-death pair.
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Applications on a real 2D dataset
For the rest of this talk we will use the LANDMASS↟ dataset to demonstrate the 
workflow and our results. This is a publicly available dataset of two sets of labeled 2D 
seismic image patches, each with 4 classes.

↟Alaudah, Y., Wang, Z., Long, Z. and AlRegib, G. [2015] LANDMASS Seismic Dataset.

LANDMASS-1 LANDMASS-2

Image Size (pixels)

Horizons
Chaotic Horizons

Fault Patches
Salt Domes

99 x 99

9385
5140
1251
1891

150 x 300

1000
1000
1000
1000

Class Names Number of Images Number of Images

1.
2.
3.
4.
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Sample images (images not to scale)
LANDMASS-1 LANDMASS-2

Horizons Chaotic Horizons

Fault Patches Salt Domes

Horizons Chaotic Horizons

Salt DomesFault Patches
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Persistence diagram results (LANDMASS-2)
Sample Images

Class 1 Class 2

Class 4 Class 3
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Persistence diagram results (LANDMASS-2)
Persistence Diagrams

Class 1 Class 2

Class 4 Class 3

Subtle differences between the 
persistence diagrams.

To train a classifier we need:
➢ Statistically significant intra-class 

similarity.

➢ Statistically significant inter-class 
dissimilarity.

Currently working on how to make this 
more precise, and generate metrics.
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Need for featurization of persistence diagrams
We want to use a machine learning (ML) approach for training a classifier based 
on the persistence diagrams.

So far: 2D Images Persistence Diagrams

Key points about the persistence diagrams:

➢ Every image produces a different number of birth-death pairs.

➢ We want a standard number of features for a ML workflow.
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Polynomial featurization
One approach is based on polynomial functions↟, which we adopt in our work:

↟ A. Adcock, E. Carlsson, G. Carlsson. The ring of algebraic functions on persistence barcodes. Homology, 
Homotopy and Applications. 18(1) 2016.

For both homology dimensions 0 and 1 we choose: 

This gives us a total of 15 x 2 = 30 features per 
persistence diagram. Featurization
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LANDMASS-1 features
Projection of polynomial features into top two principal components. Each point 
is an image in the LANDMASS-1 dataset.

➢ Class 1 separates 
nicely from the 
other classes.

➢ With 2 principal 
components, 
classes are not well 
separated.

➢ More components 
are needed.
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LANDMASS-2 features
Projection of polynomial features into top two principal components. Each point 
is an image in the LANDMASS-2 dataset.

➢ Classes reasonably 
well separated with 
just top 2 principal 
components.

➢ Equal class sizes 
help classification.
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ML workflow

Split data into train 
(70%) and test 

(30%) sets, per class, 
randomly.

Produce persistence 
diagrams for each 

image.

Produce polynomial 
features from each 

persistence diagram.

Train and test blackbox 
classifiers on 
polynomial features.

Three algorithms 
tested:
● Multiclass SVM
● RF
● NN
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Derived attribute image based ML workflow

Split data into train 
(70%) and test 

(30%) sets, per class, 
randomly.

Produce persistence 
diagrams for each 

image.

Produce polynomial 
features from each 

persistence diagram.

Train and test blackbox 
classifiers on 
polynomial features.

Three algorithms 
tested:
● Multiclass SVM
● RF
● NN

Create derived 
attribute images 

from the raw images 
(e.g. root mean 

square amplitude, 
GLCM* cubes)

* GLCM: Gray-Level Co-Occurrence Matrix
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Classification results: Multiclass SVM classifier

Class 1 / Class 2 / Class 3 / Class 4

Top Row:       LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw 
image, and best 4 attributes 
with respect to RF classifier.

➢ Linear classifiers like 
SVM perform poorly.

➢ Need nonlinear decision 
boundaries.
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Classification results: RF classifier

Class 1 / Class 2 / Class 3 / Class 4

Top Row:       LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw 
image, and best 4 attributes 
with respect to RF classifier.

➢ Nonlinear classifiers do 
much better.
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Classification results: NN classifier

Class 1 / Class 2 / Class 3 / Class 4

Top Row:       LANDMASS-1
Bottom Row: LANDMASS-2

Classification accuracy of raw 
image, and best 4 attributes 
with respect to RF classifier.

➢ Nonlinear classifiers do 
much better.
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Conclusions
➢ TDA derived features perform well for texture classification in 

seismic images.

➢ Nonlinear decision boundary classifiers are necessary for good 
classification accuracy.

➢ These features could augment existing ML workflows for similar 
tasks.
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Software used in this study
➢ GUDHI[1] in Python — persistent homology calculations.

➢ Scikit-learn[2] in Python — SVM and RF classifiers.

➢ Tensorflow[3] in Python — NN classifier.

[1] C. Maria, “Filtered Complexes, GUDHI User and Reference Manual”, http://gudhi.gforge.inria.fr/doc/latest/group 
simplex tree.html, 2015.

[2] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research 12, 2011.

[3] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems”, Whitepaper, 
https://www.tensorflow.org/, 2015.
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Questions

Thank you for listening!

Questions?

If you need more information contact us by email at:
rsarkar@stanford.edu, bjnelson@stanford.edu 
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